Make a table of the number of penguins of each species observed on
each island. Format with good column headings and a title.
penguins |> rename(Species = species) |>
count(Species, island) |>
pivot_wider(names_from = island, values_from = n,
values_fill = 0) |>
kable(caption = "Number of individuals of each species observed on three island near the Antarctic peninsula.",
# col.names = c("Species", "Biscoe", "Dream", "Torgersen")
) |>
add_header_above(c(" " = 1, "Island" = 3)) |>
kable_styling(full_width = FALSE)
Number of individuals of each species observed on three island near the
Antarctic peninsula.
|
Island
|
Species
|
Biscoe
|
Dream
|
Torgersen
|
Adelie
|
44
|
56
|
52
|
Chinstrap
|
0
|
68
|
0
|
Gentoo
|
124
|
0
|
0
|
Bonus material
gapminder |>
filter(country == "Canada" | country == "Iran")
## # A tibble: 24 × 6
## country continent year lifeExp pop gdpPercap
## <fct> <fct> <int> <dbl> <int> <dbl>
## 1 Canada Americas 1952 68.8 14785584 11367.
## 2 Canada Americas 1957 70.0 17010154 12490.
## 3 Canada Americas 1962 71.3 18985849 13462.
## 4 Canada Americas 1967 72.1 20819767 16077.
## 5 Canada Americas 1972 72.9 22284500 18971.
## 6 Canada Americas 1977 74.2 23796400 22091.
## 7 Canada Americas 1982 75.8 25201900 22899.
## 8 Canada Americas 1987 76.9 26549700 26627.
## 9 Canada Americas 1992 78.0 28523502 26343.
## 10 Canada Americas 1997 78.6 30305843 28955.
## # ℹ 14 more rows
gapminder |>
filter(country == "Canada" | country == "Iran" | country == "China")
## # A tibble: 36 × 6
## country continent year lifeExp pop gdpPercap
## <fct> <fct> <int> <dbl> <int> <dbl>
## 1 Canada Americas 1952 68.8 14785584 11367.
## 2 Canada Americas 1957 70.0 17010154 12490.
## 3 Canada Americas 1962 71.3 18985849 13462.
## 4 Canada Americas 1967 72.1 20819767 16077.
## 5 Canada Americas 1972 72.9 22284500 18971.
## 6 Canada Americas 1977 74.2 23796400 22091.
## 7 Canada Americas 1982 75.8 25201900 22899.
## 8 Canada Americas 1987 76.9 26549700 26627.
## 9 Canada Americas 1992 78.0 28523502 26343.
## 10 Canada Americas 1997 78.6 30305843 28955.
## # ℹ 26 more rows
gapminder |>
filter(country %in% c("Canada", "Iran", "China"))
## # A tibble: 36 × 6
## country continent year lifeExp pop gdpPercap
## <fct> <fct> <int> <dbl> <int> <dbl>
## 1 Canada Americas 1952 68.8 14785584 11367.
## 2 Canada Americas 1957 70.0 17010154 12490.
## 3 Canada Americas 1962 71.3 18985849 13462.
## 4 Canada Americas 1967 72.1 20819767 16077.
## 5 Canada Americas 1972 72.9 22284500 18971.
## 6 Canada Americas 1977 74.2 23796400 22091.
## 7 Canada Americas 1982 75.8 25201900 22899.
## 8 Canada Americas 1987 76.9 26549700 26627.
## 9 Canada Americas 1992 78.0 28523502 26343.
## 10 Canada Americas 1997 78.6 30305843 28955.
## # ℹ 26 more rows
penguins |> count(species, island) |>
pivot_wider(names_from = island,
values_from = n,
values_fill = 0) |>
kable(caption = "Number of penguins observed on each island, by species",
col.names = c("Species", "Biscoe", "Dream", "Torgersen")) |>
add_header_above(c(" " = 1, "Island" = 3)) |>
kable_styling()
Number of penguins observed on each island, by species
|
Island
|
Species
|
Biscoe
|
Dream
|
Torgersen
|
Adelie
|
44
|
56
|
52
|
Chinstrap
|
0
|
68
|
0
|
Gentoo
|
124
|
0
|
0
|